The Mobilization of Aluminum into the Biosphere
نویسندگان
چکیده
Aluminum is currently the most widely used non-ferrous metal, and its extraction and purification from geological stores exceeds that of any other metal except iron (1, 2). In 2013, global primary aluminum production was ~52 million tons (104 billion pounds) or about 15 pounds for very person on the earth (1–4). The global outlook for aluminum demand from developing countries such as Brazil, China, India, and Indonesia is rapidly increasing, due to new applications for aluminum and aluminum alloys in infrastructural support, transportation including automobiles, aviation and aerospace applications, electrical transmission, and the generation of energy, including catalytic zeolites in the petroleum and petrochemical industries (5). Interestingly, the largest “machine” built by humankind is the domestic and international networks for the transmission of electricity. Although traditionallyused copper has a higher electrical conductivity, aluminum is only slightly less so, being lighter, more ductile, and less expensive; aluminum is now widely used for both high-voltage tower construction and the electrical transmission wires themselves (2–5). It has been estimated that within the next 10 years aluminum production will exceed that of the previous 150 years (1–3). This prolific de novo generation of aluminum combined with its highly efficient recycling means this metal is becoming increasingly present in our biosphere, defined as the sum of all ecosystems and living organisms on the earth. This short “Opinion” paper will overview and comment on the current massive mobilization of aluminum into the earth’s biosphere. ALUMINUM GEOLOGY, HISTORICAL AND INDUSTRIAL PERSPECTIVES Bound tightly by oxygen and silicon, aluminum oxides and silicates, commonly referred to as alumina and/or aluminosilicate, exist naturally in ores generically termed bauxite. Bauxite consists mainly of the hydrated aluminum oxide (Al2O3xH2O) minerals gibbsite, boehmite, and diaspore, and is the world’s main source of raw material for the production of aluminum. Aluminum is extremely abundant; and after oxygen and silicon is the third most abundant element in the earth’s crust and the most abundant metal (1–6). Bauxite ore often contains several varieties of iron oxides, mostly goethite, hematite, and the clay mineral kaolinite making them reddish in appearance; widely distributed in the tropics, rusty-red soil types called laterites are highly enriched in complex aluminumand iron-oxides. Interestingly, as the primordial earth cooled, the lighter, lowest-density elements rose to the surface crust, and aluminum, one of the lightest metals known, currently exists in relatively easy-to-access near-the-surface deposits (7). Hence, two geophysical features make bauxite relatively easy to acquire as (i) massive bauxite deposits lie very near the earth’s surface, conducive to strip mining, with little or no overburden to remove; and (ii) the aluminum content of bauxite is very high in the lithosphere, conducive to vast bauxite mining and smelting operations. It is not often appreciated that although aluminum averages 8% (w/v) of the entire earth’s crust, alumina-enriched bauxite ore deposits can often reach up to 50% (w/v); for example, the Gove and Weipa bauxite deposits of Northern Territory and Queensland, Australia contain ~50% available alumina, and are currently among the largest, most accessible, and highest grade bauxite mines in the world (4, 6). Remarkably, the largest aluminum mines in Australia can extract ~3,000 tons (6,000,000 pounds) of bauxite per hour, and these are the largest contributors to a global aluminum production, which is currently in excess of about ~6,000 tons (12 million pounds) of 99% pure aluminum produced every hour of every day (2–5). The virtual inexhaustible supply of alumina in the earth’s crust combined with the high recycling potential for aluminum (see below) guarantee to make aluminum an expanding presence and permanent fixture in our biosphere for the foreseeable future. Alumina, aluminosilicates, and bauxite are relatively inert, naturally occurring compounds, in contrast to aluminum’s extremely high reactivity in its pure elemental form (3). Aluminum was first produced experimentally in 1825 by the Danish chemist Hans Christian Oersted, and later the German, French, and Austrian chemists Friedrich Wöhler, Henri SainteClaire Deville, and Carl Joseph Bayer up-graded isolation efficiencies and purification technologies, (7, 8). Just ~75 years later, the inception and application of the Hall–Heroult–Bayer process, and later modifications and upgrades of this industrial technology, including implementation of the Soderberg and prebake technologies, has made aluminum mining, extraction, and purification a multibillion international industry. Global aluminum production since 1900 has increased an amazing ~13,000-fold (3, 5, 7). In the currently used Hall–Heroult–Bayer process molten
منابع مشابه
Advances in Hematopoietic Stem Cell Mobilization and Peripheral Blood Stem Cell Transplantation
Hematopoietic stem/progenitor cells (HSPCs) which give rise to different blood cell types are present within the bone marrow microenvironment, especially in flat bones such as skull, vertebrae, pelvis and chest. Interacting factors such as stromal derived factor-1/CXCR4, very late antigen-4/vascular cell adhesion molecule-1, Lymphocyte function-associated antigen-1/ intercellular adhesion molec...
متن کاملHost Specificity of Cuscuta reflexa Roxb. in the Manas Biosphere Reserve, Indo-Burma Hotspot
The dodder plant Cuscuta reflexa Roxb. is an angiospermic leafless parasitic plant belonging to the family Cuscutaceae is abundantly found colonizing certain plant species in the premises of Manas Biosphere Reserve (MBR) and nearby area. Ten (10) angiospermic host plants in total of the above parasite were recognized. Based on the field inspection most of the numbers of patches were recorded in...
متن کاملEffect of Early Mobilization on Hemodynamic Parameters of Patients Undergoing Sleeve Gastrectomy; A Randomized Clinical Trial
Aims: Today, due to the failure of non-surgical methods in the treatment of obesity, surgical procedures such as sleeve gastrocetomy are used. Similar to other invasive interventions, sleeve gastrectomy causes an imbalance in hemodynamic parameters. The aim of this study was to determine the effect of early mobilization on hemodynamic parameters in patients undergoing sleeve gastrectomy. Mater...
متن کاملبررسی تاثیر ریتم شبانه روزی بر ترشح آدرنالین و نور آدرنالین و ارتباط ان با میزان موبیلیزاسیون سلول های بنیادی CD34
Hematopoietic stem cells (HSCs), which have the ability to differentiate into various types of blood cell lines, are usually separate from the bone marrow. But these cells are also present in a small amount in the peripheral blood, and their amounts increase in blood following injection of G-CSF. However, the mechanism involved in moving HSCs under the influence of G-CSF is unknown. The aim of ...
متن کاملStudy qualities and quantities tree parameters in the protected and non-protected areas in the Dena Biosphere Reserve
Dena Biosphere Reserve located in Iran and is a 550 Biosphere Reserve in the worlds. This research was investigated in the two protected and non-protected areas, in a Dena Biosphere Reserve, Kohkeloye va Boyrahmad province, and central zagros forest, southwest of Iran. Inventory methods designed by systemetic-randomaiz method by use the rectangular plots that were 15×30 meters in the 100×100 m ...
متن کامل